By Jeff Roberson,
Design team leader,
Eyring Corporation.

VARIOUS

Accurate, High Resolution Absolute
Timing on the PC Platform

After 16 years, The IBM® PC-AT compatible hardware platform is still alive and well. Today’s PCs are
plentiful, inexpensive and fast, with CPU clock rates now exceeding 1 GHz. However, the advances in
real time operating system (RTOS) software timing capabilities have not necessarily kept pace with the
hardware speed improvements. This article presents a design for an accurate, high resolution PC RTOS
timing subsystem which takes full advantage of this extra CPU bandwidth to provide improved capabili-
ties and services to real-time and embedded applications. By increasing the clock tick frequency and

clock accumulator precision, the instantaneous and long term software clock errors can be reduced
significantly. And the high speed clock allows tasks to be accurately scheduled in the absolute time
domain with resolution that is improved by several orders of magnitude. EYRX® is a new PC RTOS
from Eyring Corporation that incorporates these design concepts (see: http://www.eyrx.com). The timing
performance improvements are impressive. For example; when running with a 200 kHz system clock
tick frequency on a 500 MHz machine, this new timing subsystem allows Eyrx to 1.) provide a software
clock with 5 microsecond resolution and accuracy that can be calibrated to within 32 microseconds
per year, 2.) preemptively schedule 100,000 tasks per second with each task receiving a full two-tick
timeslice, and 3.) awaken a sleeping task at a precise absolute time with a worst case delay of less
than 15 microseconds. Data acquisition, process control, high speed networking, sequencers, robotic
feedback loops and other time critical applications can all benefit from these improved operating sys-

tem software timing capabilities.

PC CLOCK HARDWARE

n the PC platform, a 1.19318 MHz crystal pro-

vides the base reference frequency to the

8253/8254 Programmable Interval Timer (PIT)
chip. Using channel 0 operating in mode 2 (Rate
Generator), the PIT chip divides this base input fre-
quency down by a programmable whole integer count
(2 to 65536) and generates an output signal which
pulses at this reduced frequency (18Hz to 596KHz).
This periodic pulsing signal is fed into the IR0 input on
the master 8259A Programmable Interrupt Controller
(PIC) chip which generates an IRQO interrupt for each
clock tick pulse received. The operating system IRQO
Interrupt Service Routine (ISR) maintains clock time by
adding a fixed amount of time to a master clock accu-
mulator variable each time it services a tick interrupt.
During system startup, this master clock variable is set
using the time obtained from the MC146818 battery
backed-up CMOS real time clock. The operating sys-
tem’s software clock time instantaneously jumps
ahead by a quantum amount once each tick, then
stays constant between ticks. Thus, while true time
advances in a smooth continuous manner, the system
software clock time jumps ahead in a periodic, step-
wise, non-continuous manner.

TIMEKEEPING ACCURACY

This software clock time keeping methodology inher-
ently introduces both instantaneous and long-term
clock errors. These errors must be minimized by the
RTOS to provide an accurate, high-resolution time
base. For the sake of this discussion, we shall assume
that the PC's time reference hardware crystal is per-
fectly stable and exhibits no frequency drift over time.
We also assume that the software clock time exactly
matches true time when it is initially set during the boot

process.

INSTANTANEOUS CLOCK ERROR

Each time a running application calls the operating
system to fetch the current time, the clock time value
that is returned is always wrong by some finite amount.
This is because at any given instant in time, the soft-
ware clock time always lags true time by an amount
which is limited to the clock tick time interval. This
instantaneous clock error effect is illustrated in Figure
1, which plots software clock time (vertical axis) as a
function of true time (horizontal axis). At true time TtO
(11), a task calls the operating system, which retums
the current software clock time TcO (8). The instanta-
neous clock error TerQ is thus 11 - 8 or 3 time units.
To illustrate the effect of frequency, at time 16 the sys-
tem clock tick interrupt frequency is doubled and is
doubled again at time 28. The actual clock tick inter-
rupts are plotted along the bottom of the figure. Note

E|

Figure 1. Long Term Clock Drift Error.

Copyright 2001 by Dedicated Systems Magazine - 2001 Q3 (hip://www.dedicated-systems.com)

77



78

VARIOUS

E

5 T

L

Figure 2. Long term clock drift error.

that as the tick interrupt frequency is increased, the
worst case instantaneous clock error is proportionally
decreased. This figure demonstrates that the worst-
case instantaneous clock error is inversely proportion-
al to the tick interrupt frequency.

If the amount of time added to the system clock each
tick is not exactly correct, the software clock time will
linearly drift away from true time. This long-term clock
drift error effect is illustrated in Figure 2. In this (exag-
gerated) example, the amount of time that the tick ISR
adds to the software clock is too small (is 3, should be
4). Thus, the clock is slow. At time zero, the system soft-
ware clock is initially synchronized to the correct true
time. Some time later, at true time Tt1 (36), a task calls
the operating system, which returns the current soft-
ware clock time Tc1 (27). The long-term clock drift error
Terrl is 36 - 27 or 9 time units. Note that in this exam-
ple, the instantaneous error is negligible at Tt1, since
the task fetched the time immediately after it was
updated by a tick interrupt.

RTOS CLOCK DESIGN

Armed with an understanding of how clock errors
occur, an RTOS timing subsystem can be designed to
minimize these errors and thus achieve improved
short and long term timekeeping accuracy. To mini-
mize shortterm instantaneous clock error, the tick
interrupt frequency must be maximized. To minimize
long-term clock drift error, the time increment that is
added to the clock accumulator variable each tick
must be adjustable to allow precise clock speed cali-
bration. The following discussion describes the design
of various time related RTOS components that com-
bine to provide optimal system clock accuracy.

CLOCK VARIABLES

First, the resolution and size of the system clock vari-
ables must be chosen. Lets start with the clock accu-
mulator variable, which is used to store the current
time.

Unix clocks typically maintain the time elapsed since
midnight, January 1, 1970 (a time otherwise known as
the epoch). Since this is very common, we'll chose the

same start time reference for our RTOS clock. For size,
we could use a 32-bit integer and store the number of
seconds elapsed since the epoch. This is obviously
inadequate since a good RTOS requires timing reso-
lution much finer than one second. Choosing a 64-bit
integer with nanosecond resolution seems reasonable.
This provides a nanosecond clock having a duration
of 584 years that will expire in the year 2554 if the start
time reference date is set to the epoch (ie. same as
Unix).

Next, the tick time interval variable must be defined.
This variable contains the time quanta that is added to
the clock accumulator once each tick. Since the tick
ISR uses simple integer addition, the resolution of this
interval variable must be nanoseconds to match the
resolution of the accumulator variable. For size, a 32-bit
integer is adequate to store the tick time interval in
nanoseconds for all possible tick frequencies (ie. 18
Hz to 596 kHz). Thus for our initial design, the tick ISR
adds a 32-bit count of nanoseconds to a 64-bit mas-
ter clock accumulator variable. However, this clock res-
olution shall later prove to be inadequate.

To reduce long term clock drift error, it was determined
that the tick time interval must be adjustable to allow
the clock speed to be calibrated. Since this time inter-
val value is stored as an integer, the finest adjustment
increment is one count (nanosecond). Note that this
adjustment is applied once each clock tick, so the
overall clock speed adjustability is affected by the
clock frequency (slow clock frequencies provide finer
overall adjustment resolution than higher frequencies).
Lets check to see if our nanosecond clock design pro-
vides adequate speed adjustment resolution. With a
relatively high clock tick frequency, say 100 kHz, the
smallest possible tick interval adjustment (one
nanosecond) has the following effect over a one-year
period:

[t can be seen that a one nanosecond per tick interval
adjustment equates to 52 minutes per year when run-
ning at 100 kHz This overall adjustment resolution is
excessively coarse for our RTOS design. Thus, our ini-
tial nanosecond clock resolution proves to be inade-
quate.

By further extending the clock variables another 32-
bits, the clock accumulator becomes 96-bits and the
tick time interval becomes 64-bits. However, from a
running application’s point of view, the previous
nanosecond clock design had more than enough res-
olution, so this extra 32-bits of clock resolution can be
hidden from view and used internally by the operating
system. The upper 64-bits of the 96-bit clock accumu-
lator and the upper 32-bits of the 64-bit tick time inter-
val variables shall retain their previous units (nanosec-
onds), and the extra 32-bits will be used to represent
the fractional nanosecond portion. Thus, each clock
accumulator count now represents exactly 2-32
nanoseconds or approximately 2.3283E-19 seconds.

Copyright 2001 by Dedicated Systems Magazine - 2001 Q3 (hitp://www.dedicated-systems.com)



Our new, extended precision clock now has the fol-
lowing overall adjustment resolution when running at
100 kHz:

This provides more than enough clock speed adjust-
ment resolution (better than one microsecond per
year). Thus, the size and resolution of our new clock's
variables are now finalized. To summarize: At each
clock tick, the ISR adds a 64-bit tick time interval to a
96-bit clock accumulator. Applications can only see
the upper 64-bits of the system clock which represents
the number of nanoseconds elapsed since the epoch.

PREEMPTIVE TIME SLICING

Our RTOS shall implement preemptive time slicing to
provide timely response and to prevent any one task
from hogging the CPU. Time is chopped up into times-
lices which are distributed among runnable tasks.
Once scheduled, each task gets to run for a maximum
of one timeslice before the scheduler is re-invoked.

Note that a task can voluntarily relinquish the CPU at
any time before the end of its timeslice, so the sched-
uler is not always invoked on a tick boundary. For opti-
mum performance, each timeslice must therefore be
comprised of two clock ticks. This is because each
task’s actual run time during the first tick of its timeslice
will vary since the start time can randomly occur at any
point between clock ticks. Thus, to guarantee that each
task gets at least one whole tick in which to run, two
ticks per timeslice are required. To implement this pre-
emptive time slicing, each task shall have a ticks-to-go
timeslice count variable in its task control block that is
maintained by the clock tick ISR.

CLOCK TICK INTERRUPT SERVICE
ROUTINE

Maximizing the system clock frequency implies mini-
mizing the duration of the timer tick ISR. Since the tick
ISR must be short, it can only do that which is
absolutely necessary. The ISR must add the tick time
interval to the system clock accumulator and decre-
ment the current task’s timeslice ticks-to-go count.
When the task's count reaches zero, the ISR flags a
task switch, reloads the timeslice count (for its next run)
then invokes the scheduler.

SCHEDULER

Our new RTOS must allow a task to suspend on an
absolute time event (i.e. until some arbitrary, specific,
absolute time). And if the highest priority task in the
system is suspended on an absolute time event, it
must be awakened and scheduled in a quick, deter-
ministic manner once its wake up time has been
reached. These requirements influence our choice of
scheduler. Two fundamental types of prioritized sched-
ulers are commonly used. The main difference
between the two is the location of the system over-
head code that is responsible for waking up tasks.

A double-list scheduler type maintains two separate
task lists. The first list contains all the tasks that are

VARIOUS

ready to run and is sorted by priority. The second list
contains all the tasks that are suspended waiting for
some event. This type of scheduler does not waste
time scanning tasks that are suspended and is able to
quickly find the next task to be run by simply picking
the task that is currently at the top of the ready list.
However, an RTOS that implements this double list
scheduler type must also provide separate mecha-
nisms to move tasks from the waiting list to the ready
list (i.e. wake them up).

A single-list scheduler type maintains only one task list.
All tasks, both running and suspended are placed in
the single list, which is sorted by priority. As it scans
looking for the highest priority runnable task, the
scheduler is responsible for moving tasks from the
suspended state to the running state. The highest pri-
ority runnable task in the list is always picked to be
scheduled next.

If we chose the double list scheduler for our design, we
must provide a way to move tasks from the waiting list
to the ready list. Waking a task that is suspended on a
non-time event does not present a problem since the
sleeping task is quickly and deterministically awak-
ened by an ISR or task that is responsible for handling
the event. However, absolute time events do present a
problem. With a double list scheduler, there are two
ways to wake up tasks that are suspended on time
events.

With the first method, the tick interrupt ISR scans all
tasks that are suspended on time events, and wakes
all those whose time has come. This method is unac-
ceptable because the tick ISR duration must be mini-
mized. The second method uses a separate, dedicat-
ed task which essentially does the same thing as the
ISR, but from the task level rather than from the inter-
rupt level. Both of these methods share a common
problem, particularly when the system is running at a
high frequency with lots of tasks. The entire task list
must be scanned each invocation, which not only
adds a lot of unnecessary overhead, it also requires a
non-deterministic amount of time to complete. If 1000
tasks, including the highest priority task, are all sus-
pended on time events, the highest priority task is
delayed from running until all 1000 tasks have been
scanned and possibly awakened. Thus, we conclude
that the double list scheduler type is not appropriate for
our high speed RTOS.

So we choose the single task list scheduler type, which
works as follows: When a task suspends on an
absolute time event, the 64-bit nanosecond wake up
time is stored in its task control block The tick ISR
quickly and deterministically updates the system clock
accumulator and handles preemptive timeslicing.
When invoked, the scheduler first reads the clock time
then proceeds to scan the task list starting with the
highest priority. The wakeup conditions for each sus-
pended task are tested in tumn. If a clock tick occurs
while scanning, the scheduler starts all over again from
the top. Once a ready to run task is found, it is imme-
diately scheduled. Thus, the time delay required to
wake up and schedule any given task is proportional
to the number of tasks which have higher priority (..

Copyright 2001 by Dedicated Systems Magazine - 2001 Q3 (hip://www.dedicated-systems.com)

79



VARIOUS

high priority tasks are scheduled quicker than low pri-
ority tasks). In other words, the scheduler never wastes
time waking up low priority tasks while high priority
tasks are still ready to run.

TASK TIME SCHEDULING
ACCURACY

So we now have an RTOS design that provides an
accurate, high resolution clock and an ability to sus-
pend tasks on absolute time events. So how well does
it perform? When the time comes to wake up a task
that is suspended on an absolute time event, the task
is actually scheduled some time after the requested
time has passed. Figure 3 illustrates the conditions
required to produce the worst case for this task sched-
ule time delay. For this example, the system clock tick
frequency is 200 kHz with a corresponding time inter-
val of 5 microseconds. With two ticks per timeslice, the
scheduler is being invoked at a frequency of 100 kHz.
TASKS is the highest priority task in the system and is
initially suspended on an absolute time event. Two
other tasks, TASK1 and TASK2, are both actively run-
ning at a common (lower) priority and are being sched-
uled in a round-robin manner. The requested absolute
wakeup time for TASK3 is Treq (21), which occurs just
after a clock tick boundary (20). Thus, when time 20
comes along, the scheduler does not wake up TASKS.
Instead, TASK1 is scheduled which runs for a full
timeslice.

When TASKT finishes its slice, TASKS is finally sched-
uled at time Twake (34). The task schedule delay
Tdelay is thus 34 - 21 or 13 microseconds. The figure
graphically demonstrates that for fast clock frequen-
cies, the worst case delay is limited to less than three
clock ticks. (Note that for slow clock frequencies, the
worst case delay is actually closer to two clock ticks)

APPLICATIONS

With a software clock running at high frequencies, time
is being chopped up into very fine slices. This provides
several benefits: The system clock can provide accu-
rate and high-resolution time keeping. Many tasks can
be given a chance to run in a short period of time
(when running at 200kHz, 100 active tasks can be
scheduled in a single millisecond, with each task run-
ning for a full timeslice). And tasks can now be accu-
rately scheduled in the absolute time domain with
small worst case delays. Time sensitive applications
that were previously scheduled with an accuracy on
the order of tens of milliseconds, can now be sched-
uled to within tens of microseconds.

These new capabilities open up new application pos-
sibilities. A data acquisition system that receives data
asynchronously could now provide accurate, precise
time stamps for incoming data. For example, a packet-
sniffer program that is responsible for monitoring high
speed network activity, could time stamp packet arrival
and departure times and compute more accurate
delay times. Using absolute time events, a sequencer
application could accurately generate external events
with sub-millisecond precision. In the field of robotics,
control feedback loops could be tightened up consid-

Hall v i o o leCotrd it ol el

- N B el w e, I

C o I I T S T o

f=] [

Figure 3. Worst case task schedule time delay.

erably and more tasks could run concurrently with no
loss of response times, since many tasks can be
scheduled in a very short time frame. Undoubtedly,
other high speed process control applications could
also benefit. This new RTOS design thus provides
improved timekeeping accuracy and new timing capa-
bilities to embedded/real-time/dedicated systems
designers working with the PC platform.

EYRX®

Eyrx is a new RTOS for the PC platform from Eyring
Corporation (http://www.eyring.com) which implements
the design components just described. The clock
speed is calibrated with a 32-bit dimensionless vari-
able, which has units of picoseconds per second. This
provides a clock calibration resolution of 31.6
microseconds per year. And since Eyrx has low over-
head, it allows running the clock at very high frequen-
cies indeed. For example: When running on a 1200
MHz processor, Eyrx allows setting the clock tick fre-
qguency to 400 kHz (with bandwidth to spare).
Additionally, Eyrx allows changing the clock tick fre-
quency “on-the-fly” at any time with no loss of time-
keeping accuracy. This allows a system designer to
select an appropriate clock frequency that is custom
tailored to the current task at hand. For embedded
applications, slow frequencies conserve power and
reduce system overhead while high frequencies pro-
vide high resolution task time scheduling.

Eyrx was designed from the ground up to truly take
advantage of today’s high speed PCs. In addition to its
advanced timing subsystem, it provides other features
that should appeal to the dedicated systems market: A
small, modular, scaleable footprint, virtually unlimited
tasks and priorities, sharable dynamic link libraries, a
rich APl with ANSI C library (with many POSIX func-
tions), standard PC device drivers, TCP/IP networking,
familiar and inexpensive development tools, profes-
sional support and much more

In 1981, Jeff received his Bachelors degree in Civil
and Environmental Engineering from Utah State
University. He worked as an engineer for 11 years in
the solid rocket motor aerospace industry design-
ing, coding and maintaining real-time control and
data acquisition software for robotic testing and
inspection systems. More recently, he spent 4 years
working for Eyring Corporation as the design team
leader for the new Eyrx real time operating system.

Copyright 2001 by Dedicated Systems Magazine - 2001 Q3 (hitp://www.dedicated-systems.com)



